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Abstract

Control and estimator gains are computed for linear-quadratic-Gaussiaa (LQG) op-
timal control of the axial vibrations of a thermoelastic rod. The computations are based

on a modal approximation of the partial differential equations representing the rod, and

convergence of the approximations to the control and estimator gains is the main issue.

1 Introduction

The axial vibrations of a uniform rod are represented by a one-dimensional wave equation

with constant coefficients, and thermoelastic damping in the rod is represented by a one-

dimensional heat equation coupled to the wave equation. The solutions to the wave and

heat equations are, respectively, the axial displacement and temperature fields in the rod.

[See 1, 21.
The length of the rod in this paper is normalized to 1. For active control, a single force

is distributed parallel to the rod, uniformly over the portion so _< s _< Sl of the rod. The

equations of motion of the plant are then

pw,t = (_ + 2_)w,, - _(3_ + 2.)0, + bu+ b_,, t>O, O<s<l,

t>O, O<s<l,pcOt= kOs, - Ooa(3)t + 2tz)Wts,

where

(1.1)

(1.2)

1, So<S<Sl, (1.3)b(s) = O, otherwise.
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In theseequations,w(t) = w(t, s) is tile axial displacement, a(t) = O(t, s) is the temperature

distribution and u(t) is the control force. We assume that the actuator force has the form

u + r/l where u(t) is the known control function and rh is zero-mean Guassian white noise

with intensity ql- The constants p, a, A, p, 00, c and k are physical constants with values to

be given later.

We assume that we have a sensor that measures the displacement at the left end of the

rod segment over which the actuator force is distributed. This measurement is then

y(t) = w(t, So) + 71o (1.4)

where 00 is zero-mean Guassian white noise with intensity 1.

In this paper, we use the boundary conditions

w(t,O) = w(t, 1) = 0, (1.5)
0,(tt0) = 0,(t, 1) = 0,

which mean that the rod is clamped and insulated at both ends. Because of the insu-

lated, or Neumann, bondary conditions for the heat equation, zero is an eigenvalue of the

open-loop system and the corresponding eigenvector represents a constant temperature dis-

tribution_=T_e span of this eigenvector is an Uncontrollable and unobservabie subSpace,

and the orthogonal complement of this subspace Contains only states for which the average

temperature along the rod is zero. Whatever the initial conditions and the control function,

the average temperature in the rod therefore is a constant function of time. We will denote

this average temperature by 0.

2 The Control Problem

We set 0 = 0 - 0 and define the state vector

• (t) = (2.1)

We take the state space to be the Hilbert space

E = H_(0,1) x L2(0, 1) x L2(0, 1) (2.2)

where H01(0, 1) is the first-order Sobolev space containing functions that vanish at both ends

of the interval. The system in (1.1) - (1.4) then has the form

= Ax + Bu + Brh, (2.3)

= cx + 00, (2.4)

where A generates a strongly continuous semigroup of contraction operators on E (see [3]).

We note that Iz_t)l_ is the sum of twice the mechanical energy in the rod and the integral
over the rod of 0 2 at time t.

The LQG optim_ control problem in thispaper:is to find u to minimize
..... -? .....

J lim £{1 _ .....= [ [(Ox(t),z(t))2E + u2(t)]dt} (2.5)
r_oo t do
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where

Qx = (w, wt, 0). (2.6)

The operator Q is chosen so that mechanical energy is penalized but temperature variations
from 0 are not penalized. As usual, this problem separates into a deterministic linear-

quadratic regulator problem and a state estimation, or filtering, problem. Each of these

problems has a unique solution because the open-loop system can be shown to be uniformly

exponentially stable.

The optimal control law has the form

u(t) = -F_(t) (2.7)

where the state estimate _ satisfies

!

z = A_ + Bu + _P(y - C_).

The gain operators F and F are given by

(2.8)

F = B*P (2.9)

and

/_ =/5C* (2.10)

where P and /5 are the unique nonnegative self-adjoint bounded linear operators on E

satisfying the Riccati operator equations [4,5]

A=P + PA- PBB*P + Q = 0 (2.11)

and

AP +/SA* - PC*CP + qlBB* = O.

The gain operators can be represented in terms of elements of E; i.e.,

(2.12)

Fz = ((fl, h, h), x)e, (fl, f_, h) _E, .

P = (],,A,]3) ,E.

(2.13)

(2.14)

3 Approximation

We approximate the infinite dimensional system in (2.3) and (2.4) with a sequence of finite

dimensional control systems of the form

xn = A,_xn + B.u + B.rll ,

y. = C.z. + 0o.

(3.1)

(3.2)

In [10], we compared two Galerkin approximations: a finite element scheme in which linear

splines were the basis vectors and a modal scheme in which the open-loop eigenvectors of

the distributed system were the basis vectors. The modal scheme gave faster convergence
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for approximationsto controlgains like those in (2.9) and (2.13). We use the modal scheme
here.

It is easy to see that the eigenspaces of the open-loop thermoelastic rod with the bound-

ary conditions in (1.5) are three-dimensional subspaces each spanned by a two-dimensional

eigenspace of the undamped wave equation and a one-dimensional eigenspage of the heat

equation. The eigenvectors are sine waves for the wave equation and cosine waves for the

heat equation. Since the modal approximation amounts to projection onto a sequence of

complete orth0gonal subspaces, it is easy to show that the approximations to the open-

loop semigroup and adjoint semigroup converge strongly, as commonly needed in numerical

solution of infinite dimensional Riccati equations for distributed systems [4-7].

For each n, we approximate the solutions to tile infinite dimensional Riccati equations

(2.11) and (2.12) by solving a pair of finite dimensional Riccati equations involving An, B,_

and Cn. Wit_ the solutions to these matrix Riccati equations, We approximate the control

and estimator gains as in [5]_ In particular, we compute approximations to the functional
gains (fl,f2,f3) and (fl,f2, fa)in (2.13) and (2.14).

4 Numerical Results:

We chose the constants in (1.1) and (1.2) for an aluminum rod of length 100in (see [8, 9]).

We normalized the length to 1, so that the constants take the numerical values

p=9.82x 10 -2 _=2.064x 10 -1 #= 1.11x 10 -1

c_ = 1.29 x 10 -3 c = 5.40 x 10-1

k = 7.02 x 10 -r 80 = 68.

The actuator force is spread uniformly between so = .385 and sl = .486, and the intensity

ofr hisql =i. .......

Figures 1-3 show the approximations to the control functional gains (.fl,f2,f3) for a

range of approximation orders n, and Figures 4-6 show the approximations to the esti-

mator functional gains (]1,]2,]3). (The number of modal subspaces used is n.) Because

thermoelastic damping is very light in aluminum, as in most metals, many modes of the

rod must be controlled actively. Therefore, many modal subspaces must be used in the

approximations before the functional gains converge.
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Figure l(a): f], the control gain, n = .2 - 17
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Figure l(b): fl, the control gain, n = 18 - 33
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Figure 2(a) : f2, the control gain, n = 2 - 17
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Figure 2(b) : f2, the control gain, n = 18 - 33
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Figure 3(a) : f3, the control gain, n = 2 - 17
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Figure 3(b): f3, the control gain, n = 18 - 33
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Figure 4(a): fl, the estimator gain, n = 2 - 17
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Figure 4(b): fl, the estimator gain, n = 18 - 33
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Figure 5(a) : f2, the estimator gain, n = 2 - 17
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Figure 5(b): f2, the estimator gain, n = 18 - 33
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Figure 6(a): f3, the estimator gain, n _ 2 - 17
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Figure 6(b): f3, the estimator gain, n = 18 - 33
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